
Geim AK, Novoselov KS (2007) Nature Mater 6:183–191 A bandgap opening technique in bilayer graphene is proposed and analysed for FET applications as a potential replacement for silicon transistors. The graphene nanoribbon (GNR) FET and dual-gate (DG) FET structures have been designed and simulated using QuantumWise ATK. The current-voltage characteristics of prototype devices are determined by the first-principles quantum transport calculations. The use of dopant atoms in graphene and its effect on drain current is studied. Various techniques to engineer the bandgap in graphene field-effect transistors (FETs) have been discussed. The absence of an energy bandgap in graphene results in severe shortcomings for logic applications. This paper explores the current status of graphene transistor as a potential supplement to the silicon CMOS technology. Graphene is the first 2D material being studied and it is also known as “miracle-material” due to its incredible physical properties. As an alternative solution, two-dimensional (2D) materials are in great demand. Nowadays, silicon CMOS technology is reached to its fundamental limits (physical and geometrical), which is the major roadblock for upcoming technological nodes. Become one of numerous happy users that are already filling out legal forms straight from their apartments.The electronic industry using silicon complementary metal-oxide-semiconductor (CMOS) technology is the leading contender in the market since five decades. Your information is securely protected, as we keep to the most up-to-date security criteria. Send the new Exploring Graphene With NanoLanguage in an electronic form as soon as you are done with filling it out. Click Done and save the resulting template to the gadget.Look through the whole document to make certain you have completed all the data and no changes are required.The Signature Wizard will help you put your electronic autograph right after you?ve finished imputing data.

